Effective drug combination for Caenorhabditis elegans nematodes discovered by output-driven feedback system control technique
نویسندگان
چکیده
Infections from parasitic nematodes (or roundworms) contribute to a significant disease burden and productivity losses for humans and livestock. The limited number of anthelmintics (or antinematode drugs) available today to treat these infections are rapidly losing their efficacy as multidrug resistance in parasites becomes a global health challenge. We propose an engineering approach to discover an anthelmintic drug combination that is more potent at killing wild-type Caenorhabditis elegans worms than four individual drugs. In the experiment, freely swimming single worms are enclosed in microfluidic drug environments to assess the centroid velocity and track curvature of worm movements. After analyzing the behavioral data in every iteration, the feedback system control (FSC) scheme is used to predict new drug combinations to test. Through a differential evolutionary search, the winning drug combination is reached that produces minimal centroid velocity and high track curvature, while requiring each drug in less than their EC50 concentrations. The FSC approach is model-less and does not need any information on the drug pharmacology, signaling pathways, or animal biology. Toward combating multidrug resistance, the method presented here is applicable to the discovery of new potent combinations of available anthelmintics on C. elegans, parasitic nematodes, and other small model organisms.
منابع مشابه
C. elegans as a genetic model system to identify Parkinson's disease-associated therapeutic targets.
Parkinson's disease (PD) is a neurodegenerative disorder characterized by motor and non-motor symptoms and the selective loss of dopaminergic neurons. The etiology of idiopathic PD is likely a combination of genetic and environmental factors. Despite findings from mammalian studies that have provided significant insight into the disorder, the molecular mechanisms underlying its pathophysiology ...
متن کاملNitazoxanide: nematicidal mode of action and drug combination studies.
Intestinal nematodes or roundworms (aka soil-transmitted helminths or STHs) cause great disease. They infect upwards of two billion people, leading to high morbidity and a range of health problems, especially in infected children and pregnant women. Development of resistance to the two main classes of drugs used to treat intestinal nematode infections of humans has been reported. To fight STH i...
متن کاملRobust Controller Design for IG Driven by Variable-Speed in WECS Using μ-Synthesis
This paper presents robust controller design for a wind-driven induction generator system using structured singular value ( -synthesis) method. The controller was designed for a static synchronous compensator (STATCOM) and a variable blade pitch angle in a wind energy conversion system (WECS) in order to achieve the required voltage and mechanical power control. The results indicated that this ...
متن کاملBehavior of Caenorhabditis elegans in a nicotine gradient modulated by food.
Nicotine decreases food intake, and smokers often report that they smoke to control their weight. To see whether similar phenomena could be observed in the model organism Caenorhabditis elegans, we challenged drug-naïve nematodes with a chronic low (0.01 mM) and high (1 mM) nicotine concentration for 55 h (from hatching to adulthood). After that, we recorded changes in their behavior in a nicot...
متن کاملCircuit Optimization Predicts Dynamic Networks for Chemosensory Orientation in the Nematode Caenorhabditis elegans
The connectivity of the nervous system of the nematode Caenorhabditis elegans has been described completely, but the analysis of the neuronal basis of behavior in this system is just beginning. Here, we used an optimization algorithm to search for patterns of connectivity sufficient to compute the sensorimotor transformation underlying C. elegans chemotaxis, a simple form of spatial orientation...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 3 شماره
صفحات -
تاریخ انتشار 2017